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While mechanical couplings between fluid and solid
domains have been widely studied, their estimation
remains challenging for deep planetary fluid layers
with buoyancy, magnetic field, and topographic
effects. Results from atmospheric or oceanic sciences
are unsuitable for thick layers such as subsurface
oceans of icy moons, or liquid cores of planets. Rapid
rotation and/or the presence of a magnetic field in
these regions may also cause difficulties. Considering
a rotating and stratified fluid layer, we have
developed an asymptotic local model to investigate
the small-scale topographic fluid-solid coupling due
to pressure or magnetic stresses. Our code unlocks
several previous limitations of planetary coupling
studies. Considering three-dimensional bumps, it
provides the fluid stress on an electrically conducting
solid (e.g. the mantle lowermost layer). We explore a
wide range of parameters and boundary conditions
for arbitrary topography shapes, and account for
planetary curvature effects by considering a "non-
traditional β-plane" approximation. Carrying out a
detailed study of the wave drag mechanism, we show
that the Rossby planetary waves, which are absent
from recent asymptotic models, can significantly
modify the boundary stress. We also show that the
results are drastically different when considering 3D
topographies instead of ridges.

1. Introduction
Studying geophysical flows commonly requires describing
the dynamics of a stratified rotating fluid flowing along
non-flat solid boundaries. This generic problem is indeed
relevant for various planetary fluid layers, which can be
either shallow (ocean, atmosphere) or deep (planetary
liquid cores, subsurface oceans of icy moons). However,
the geophysically relevant regime of vanishing viscosity
makes it difficult to undertake direct simulations of such
topography-driven flows.
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Additional numerical difficulties arise when considering magnetic fields (as for the Earth’s
liquid core) or planetary curvature (for large-scale flows) since they may require global planetary
models. This long-standing fluid dynamics issue [1,2] has thus been tackled theoretically in
hydrodynamic cases [3], mainly motivated by geophysical flows in the atmosphere and the ocean
(see [4] for a review on topographic waves in the ocean). In the laminar regime, these studies have
notably shown that flow-induced boundary stress mainly originates from the drag of topographic
hydrodynamic waves, the so-called lee or orographic waves.

In planetary liquid cores, the planetary curvature cannot be neglected for large-scale flows,
and the background magnetic field is a key ingredient of the liquid metal dynamics. The wave
drag can then also be due to magneto-hydrodynamic (MHD) waves, such as Alfvén, torsional,
or Magneto-Coriolis waves [5]. Since these waves can efficiently transport momentum and
energy, they can be recovered from geophysical observations, such as geomagnetic data [6,7] or
planetary rotation data [8]. Indeed, the accurate tracking of the Earth and Moon’s rotations allows
for constraining the coupling between the liquid core and the mantle. However, despite well-
constrained values, the coupling mechanisms are still disputed (e.g., [9]). Building on pioneering
articles [10,11], recent works dealt with the laminar dynamics of a stratified fluid layer, located
above the convective bulk of the liquid core and below a bumpy Core-Mantle Boundary (CMB).
Investigating the stress generated by the flows in this layer, these studies conclude that they
may explain the observed Earth length of the day variations [12,13], or the dissipation (i.e., the
imaginary part of the coupling) of the annual nutation [14]. However, these calculations have
been performed under multiple (sometimes severe) assumptions, such as discarded induction
and advection [14], short topography wavelength [13], or strong fluid stratification [12]. Another
limitation of these models, calculated in a planar geometry, is the presence of fluxes of electric
current and momentum at infinity. As a result of these fluxes, the average Coriolis and magnetic
force are non-zero (even with an insulating wall) and balance the topographic stress on the solid.
Direct extrapolation of these results to a spherical geometry is unacceptable from a physical
standpoint, motivating us to revisit these models. Finally, these works have considered some
relevant, but very specific, asymptotic limits, making their results difficult to extrapolate to other
configurations or planetary cores.

Building on these recent works, our aim here is to unlock these limitations by developing
a general framework for these hydromagnetic laminar flow models over a bumpy periodic
topography. To do so, we combined symbolic computations and arbitrary precision algebra to
extend previous theoretical models to higher (arbitrary) orders. Using the latest non-traditional
β-plane approximation [15], we have also better accounted for planetary curvature effects,
allowing us to consider larger-scale flows. Finally, we do not limit our model to particular
asymptotic regimes, which allows exploring continuously, in the same framework, the flows in
the atmospheric or oceanic regimes, but also planetary liquid cores or magneto-hydrodynamic
experimental setups. We aim to gain some insight into the physical mechanisms controlling the
drag in these different regimes, identifying the main waves and the dissipative effects at work.

In Section 2 we first present the geometry of the problem, the equations, and our methodology.
The next section is devoted to our numerical results. We first show that we recover classical
boundary layer flows. Then, we introduce topography and extend previous linear results to
higher orders. We specifically investigate the effects that lead to topographic stresses on the wall,
and their asymptotic limits. Section 4 begins with a discussion of the topographic waves and
the associated stress. We modify the model to include some effects that are relevant for planets,
such as an electrically conducting solid or a second boundary. We conclude this section with a
brief discussion of the geophysical applications and the motivation to undertake new laboratory
experiments.
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(a) (b)

Figure 1. Perturbing the global geometry (a) by small wavelength topographies, a local Cartesian box model can be used

(b), imposing a basic flow U0 and magnetic field B0 in a frame rotating at Ω0, with the gravity vector g0.

2. Method

(a) Geometry and governing equations
We investigate in this work the boundary coupling between a planetary fluid layer and a solid
domain (e.g. the solid inner core and/or the mantle). Focusing on spherical boundaries with shape
perturbations that are small when compared to their typical radius R, we use a local box model.
The geometry is then approximated by its tangent plane, and the problem is tackled in a periodic
Cartesian frame (see Figure 1(a)). The spherical coordinate system [1r,1θ,1Φ] is thus converted
into a local frame with 1x = 1Φ, 1y =−1θ and 1z = 1r . To account for the planetary rotation, we
work in the frame of reference rotating at Ω0, and buoyancy effects are due to a constant gravity
g0 =−g01z (Figure 1(b)).

Assuming periodicity in the x and y directions, we consider first a semi-infinite fluid, which
we then extend to a fluid layer enclosed between two boundaries. In both cases, boundary shapes
can be three-dimensional polychromatic bumps (Figure 2), that can be described with Fourier
series

h(x, y, t) = z0 + ϵt
∑
j

ℜ
[
Aje

i(kHj
·r−ωjt)

]
, (2.1)

noting z0 the boundary position without topography perturbation. We note r the position vector,
and, for each topography component, Aj the amplitude, kHj

the horizontal wave vector in the
x− y plane and ωj the angular frequency (as required for rigid topographies studied in moving
fluid frames, or for dynamical topography [16]). The relevant topography length for the flow is
the one seen by the fluid along its motion along the bumpy boundary. As our basic flow is along
1x in the following, we choose the largest topography wavelength 1/k̃ in this direction as unit
of length. This defines the non-dimensional height ϵt ≪ 1 of the topography, which is considered
small to handle the topography effects in a perturbative way.

We assume the presence of a basic flow U0 and magnetic field B0, of respective typical
magnitudes Ũ and B̃. In the following, we use the time unit 1/(Ũ k̃) and the magnetic field unit
Ũ(ρrµ)

1/2, using the fluid reference density ρr as the density unit and noting the fluid magnetic
permeability µ. Buoyancy effects are included in our model under the Boussinesq approximation.
Considering a linear equation of state for the density changes, the dimensionless buoyancy
g0ρ/(Ũ

2ρrk̃) is written as a0(z) + a. The buoyancy anomaly a is then an unknown of the problem,
and the dimensionless basic state a0(z) is characterised by the local (dimensional) Brunt-Väisälä
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Figure 2. Typical topography handled by our code, from the simple 1D ridge shape (left) considered in previous studies

[12–14], to the more complex and realistic 3D topographies considered in this work (middle: egg-box topography, right:

pyramidal-egg-box topography).

frequency N through N = Ũ k̃(−g0∂za0(z))1/2. Considering a Newtonian fluid in the rotating
frame of reference, the dimensionless velocity u, magnetic field b and buoyancy anomaly a are
thus governed by

∂tu+ (u · ∇)u=−2Ro−1Ω × u−∇p+ a1z + (∇× b)× b+Re−1∇2u (2.2a)

∂ta+ (u ·∇)a=−uzFr−2, (2.2b)

∂tb=∇× (u× b) +Rm−1∇2b, (2.2c)

with the solenoidal constraints ∇ · u=∇ · b= 0, and using the reduced pressure pwhich includes
the centrifugal effect. Noting the fluid kinematic viscosity ν and magnetic diffusivity η, we have
introduced the Froude number Fr= Ũ k̃/N = 1/

√
∂za0(z), the Rossby number Ro= Ũ k̃/Ω0, the

Alfvén numberAl= Ũ
√
ρrµ/B̃, the magnetic Reynolds numberRm= Ũ/(ηk̃), and the Reynolds

numberRe= Ũ/(νk̃). We also define the Lehnert numberLe=RoAl−1. In the following, we only
consider the case of uniform stratification a0 ∝ z and Fr is thus constant.

For a topography with a large length scale, the dimensionless parameter χ = 1/(k̃R) is also
important. Indeed, the regime χ ̸≪ 1 imposes that the local model includes curvature effects from
the spherical geometry. For such perturbations, Ω is no longer considered constant but is rather
varying as

Ω = (cos θ + χy sin θ)1z, (2.3)

which is relevant for thin fluid layers [17]. For deeper layers, the so-called non-traditional β-plane
includes, in addition, a similar linear variation (sin θ − 2χy cos θ)1y for the tangential component
[18]. It violates ∇ ·Ω = 0, as well as the conservation of angular momentum or potential vorticity
[15]. To solve this issue, an additional term 2χz cos θ1z is then required, related to the vertical
variation of the radial component of Ω, which gives [15]

Ω =
[
0, sin θ − 2χy cos θ, (1 + 2χz) cos θ + χy sin θ

]⊺
. (2.4)

These approximations introduce linear dependencies in the equations. We then take the curl of
the equation (2.2a), which removes the unknown pressure. This defines the β effect, the terms that
depend linearly on y and z being neglected. At this point, we need to remove two excess equations
due to the solenoidal constraint on B and U . We take out one of the horizontal equations for each
of the induction and vorticity equations, depending on the orientation of the horizontal wave
vector. If kx and ky ̸= 0 we can choose any of them. If kx ̸= 0 and, ky = 0 we remove the equation
along x and vice versa to respect the symmetry of the problem. In the end, we find the pressure
field, resolving the component of the equations 2.2a aligned with the base flow.
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While the velocity and the density unknowns are only required in the fluid domain, the
magnetic field has also to be obtained in the solid. When it is insulating, the magnetic field b

can be obtained from a scalar potential ψ using b=−∇ψ and ∇2ψ= 0. Electrically conducting
domains at rest, of magnetic diffusivity ηs, are also considered in the following, such that b is
governed by the diffusion equation

∂tb= η̃Rm−1∇2b, (2.5)

with η̃= ηs/η the ratio of fluid and solid (ηs) magnetic diffusivities.
The dynamical equations are then complemented by boundary conditions. The kinematic

one u · ∇F |z=h = −∂tF |z=h, with the boundary surface F (x, y, z, t) = z − h(x, y, t), reduces to
u · n= 0 for steady boundaries, with n=∇F/|∇F | the unit normal vector. This ensures that
the fluid and the boundary move consistently and suffices for inviscid fluids. More conditions
for the tangential components of u are required in the general case, such as the no-slip
condition (u− uh)×∇F |z=h = 0 with uh the velocity of the solid, or the stress-free condition
(σ · n)× n|z=h = 0, with the viscous stress tensor σ=Re−1[∇u+ (∇u)⊤]/2. Similarly, the
magnetic field continuity b|z=h− = b|z=h+ is sufficient for insulating solid domains, but in the
general case, it must be complemented by continuity conditions on the tangential components of
the electrical field. For steady topographies, this continuity condition reads

n× [(∇× b)−Rm (u× b)]|z=h− = n× [η̃(∇× b)]|z=h+ , (2.6)

where z = h− is in the fluid, and z = h+ is in the solid.

(b) Fluid efforts on solid boundaries
Through the pressure, electromagnetic and viscous forces, the flow generates stresses on the
boundary. Neglecting viscosity, the force F on the solid reduces to

F =

∫
S
pn dS +

∫
V
(∇× b)× bdV, (2.7)

with n the normal vector pointing inward of the solid, S the fluid-solid boundary surface and V
the solid volume. The Lorentz force can also be obtained by integration on a closed surface [9]),
writing it as (∇× b)× b=∇ · σM , with the Maxwell stress tensor σMi,j ≡ bibj − (b2/2)δi,j and
the Kronecker symbol δi,j . Equation (2.7) is thus transformed into

⟨F ⟩= 1

S

(∫
S
pn dS +

∮
S2

(
(n · b)b− 1

2
b2n

)
dS

)
, (2.8)

with S2 the closed surface of the volume V . To estimate the stress in the box model, the local
normal vector is expanded as

n=
∑
m=0

ϵmt nm =
[
ϵt∂xh(x, y) +O(ϵ3t ), ϵt∂yh(x, y) +O(ϵ3t ), 1 +O(ϵ2t )

]⊺
. (2.9)

The boundary stress (2.8) induced by the topography perturbation is of the order ϵ2t , which
requires a priori a challenging second-order calculation. For the tangential stress on the solid
side, it appears that it can be obtained from simpler first-order linear solutions. The form of the
horizontal component of the normal vector (2.9) (which has no zeroth order), allows us to obtain
the second-order tangential pressure stress from the linear solution [12,13]. This can easily be
extended to higher orders (e.g. order 2 solutions provide the tangential pressure stress at order 3).

(c) Basic states and perturbative expansions
Considering an imposed basic state for ϵt = 0, we aim to calculate the perturbations due to the
topography. A direct integration of the dynamical equations is then possible, using for instance
a spectral numerical method, but it would not allow us to cope with planetary values for the
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control parameters. Instead, we follow an alternative approach, linearising the equations with
perturbative expansions of the non-linear terms. The basic flow u0 is written as u0 =usu + ũ,
where ũ is a small departure from a uniform steady flow usu. Similarly, the basic magnetic field
Al−1b0 is written as b0 = bsu + b̃, where bsu is a uniform steady magnetic field, with

ũ=
∑
n=1

ϵnv ũn, b̃=
∑
n=1

ϵnv b̃n. (2.10)

The perturbations from the basic state are obtained with the double-perturbation expansion

u=u0 +
∑

m,n=0

ϵmt ϵ
n
vum,n, b=Al−1b0 +

∑
m,n=0

ϵmt ϵ
n
vbm,n, a=

∑
m,n=0

ϵmt ϵ
n
vam,n, (2.11)

where u0,0 = b0,0 = 0 and a0,0 = 0. Introducing the ansatz (2.11) in the dynamical equations, we
get a hierarchy of linear forced problems that can be integrated order by order. We use the same
double perturbation expansion for the pressure in the calculation of the surface stress. We write
the unknown perturbations (um,n, bm,n, am,n) as a sum of harmonic plane waves of wave vector
k(j) and pulsation ωj . For the part of the flow forced by the non-linearities, ωj and k(j) are given
directly by the terms of previous orders. A second part of the flow arises from the boundary
conditions, which give the horizontal part (k(j)x , k

(j)
y ) of k(j). For each (k

(j)
x , k

(j)
y ), k(j)z is obtained

from the (homogeneous) dynamical equations.
A relevant basic state for planetary studies is provided by the solid body rotation around Ω0 in

the spherical geometry, leading to a uniform and steady basic flow u0 = sin θ1x in the local model.
We can also consider an oscillating flow, which is appropriate for tidal flows or motions forced by
precession/nutation [14,19]. For the sake of simplicity, the basic magnetic field is considered here
to be uniform and steady in each local box model, varying in angle and magnitude as a function
of the position of the local model with respect to the global geometry (e.g. to account for a dipolar
field).

(d) Numerical method
At each order, the perturbed unknowns (um,n, bm,n, am,n) are searched as plane wave series
forced by the previous order (e.g. the basic state) and boundary conditions. In this study, we aim to
go beyond the linear solution. The double perturbative expansion (2.11) has then to be obtained at
high order, yielding higher accuracy and enabling the investigation of weakly non-linear effects.

The solution is expressed as the sum of exponentials exp[i(kxx+ kyy + kzz − ωt)].
Introducing this ansatz in equations (2.2), we obtain a linear system AX = b, which is non-
homogeneous for the orders m+ n≥ 2 (i.e. b ̸= 0, where b consists in the non-linear terms
arising from previous orders). The homogeneous part of the solution is obtained by considering
separately each horizontal harmonics. Ensuring the existence of non-zero solutions, the zero
determinant constraint provides the required values of k(j)z as the roots of a polynomial whose
degree depends on the number of boundary conditions. For each k

(j,k)
z , we calculate the

associated non-zero solution(s) Kjk. The eigenvalues k(j,k)z can be multiple. In such a case, they

yield several solutions Kjk. We consider in the following that the list (k
(j,k)
z ) contains all kz ,

even identical ones, and their associated solution Kjk. The homogeneous solution vector is thus
written as ∑

j

[
exp[i(k

(j)
x x+ k

(j)
y y)

∑
k

(
CjkKjk exp(ik

(j,k)
z z)

)]
. (2.12)

For the particular solutions, kz is obtained directly from the expression of the non-linear terms.
It turns out that these kz are not eigenvalues of A, and consequently, we can solve the linear
system AX = b. Finally, adding the particular and homogeneous solutions, the constants Cjk are
obtained from the boundary conditions.

The calculation involves a host of kz wavenumbers, which results in very large expressions.
To tackle this difficulty and the extreme values of the dimensionless parameters, we combine
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Figure 3. (a) Illustrating case of Stokes-Ekman-Hartmann flow between no-slip planes, at the order ϵ2v . Parameters: Al=

0.008, Rm= 12.5, Ro= 2× 10−5, Fr= 0, Re= 20, ω= 5× 105, D= 7× 10−3, χ= 0, ϵv = 0.1, η̃−1 = 0, with

u0 = ϵv cos(ωt)1x and b0 = 1z . Compares ux (black line) to Ekman (dotted orange), Stokes (dashed-dotted green)

and Hartmann (dashed blue) flows. (b) Comparison of tangential stresses on a stress-free bumpy boundary (without

magnetic field and rotation), obtained with our code (dashed) in a semi-infinite fluid layer, and with finite element DNS

calculations (solid) using a second boundary at z =−D=−4, which is flat and no-slip, moving at u0. The blue line

represents the total stress and the red line is the viscous one. Parameters: Fr= 0.1, Re=Rea = 1, u0 = sin t, η̃−1 =

0, h= 0.05 sinx.

symbolic and arbitrarily precise calculations and perform linear algebra automatically. In our
code, written in Python, the symbolic calculations are achieved using the "Sympy" package [20].
Extreme parameters can lead to badly conditioned matrices. Handling these matrices requires
high-precision calculations, which are performed with the arbitrary precision package "mpmath"
[21]. The code is then fast enough to allow systematic exploration of the parameter range.
Typically, calculation at order 4 necessitates about ten hours on one computing core, for the
simplest case of a topography with one harmonic, for an inviscid fluid and an insulating mantle.

3. Results
We first test our unconventional numerical method against standard boundary-layer flows and
previously obtained linear solutions of topographic core-mantle coupling. We then obtain the
maximum bump height ϵt for this approach to be valid. The physics of the hydromagnetic
topographic coupling is then explored, characterising the regimes of interest.

(a) Standard boundary layers and linear flows at a bumpy CMB
Fluid-solid interactions are typically found in boundary layers, which are well-known and
include a limited number of physical ingredients. In the frame of our approach, we have checked
that standard solutions on flat boundaries are easily retrieved, such as the Ekman, Hartmann
and Stokes boundary layer flows. The coloured lines illustrate in Figure 3(a) these classical flows,
which agree perfectly with the theory (not shown). We also calculate more complex boundary
layers on a flat wall. As an illustrating case, we consider a rotating and magnetised viscous fluid
oscillating along 1x between two no-slip planes. In Figure 3(a) we show one solution that includes
weakly non-linear effects of order 2 (that are dominant in Blasius boundary layers).

Having validated the main physical ingredients of the dynamical equations on flat boundaries,
one can now consider the presence of topography. To do so, a finite element model with a
bumpy boundary has been developed to perform direct numerical simulations (DNS). To control
numerical diffusion effects due to the mesh grid, this model uses finite diffusivities, and we thus
consider in this section a non-zero viscous term in the Navier-Stokes equation (2.2a) as well as a
diffusive termRe−1

a ∇2a in the right-hand side of the density equation (2.2b). A simple benchmark
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Braginsky Buffett Glane & Jault This
(1998) [11] (2010) [14] Buffett (2020) [12] work

(2018) [13]
Lorentz force ✓ × ✓ ✓ ✓

Advection × × ✓ ✓ ✓

3D bumps × ✓ × ×(a) ✓

β-plane ✓(b) × × ✓(b) ✓

Any tilt of B and Ω × × × ✓(c) ✓
Weakly non-linear × × × × ✓

Two boundaries ✓(d) × × × ✓
Non-uniform U , B, ρ × × × × ✓

Asymptotic limits Rm≪Al2Ro−1 Fr≪ 1, Ro≪ 1

Rm≪Al2Fr−2

(a) Preliminary results (see Appendix C of [12])

(b)Ω is present only via its vertical component

(c) Only 2 orientations of B (vertical and horizontal)

(d) Flat second boundary; our code can consider one or two (possibly bumpy) boundaries

Table 1. Summary of the approximations used in previous studies

case is then provided by the oscillating flow in a stratified fluid along a 2D topography, which
leads to a bounded 2D flow (Stokes boundary layer). To compare with our results in a semi-
infinite fluid domain, we use in the DNS a far enough no-slip second boundary at z =−D, which
is flat and moves at the velocity u0. As shown in Figure 3(b), the viscous and total stresses (viscous
and pressure) are in excellent agreement. By contrast with flat boundaries, the viscous force along
the basic flow direction is non-zero for a stress-free bumpy boundary. The topography indeed
allows the normal viscous stress to generate a non-zero horizontal viscous drag.

Thereafter, we consider the asymptotic limitRe−1 =Re−1
a = 0. This limit has the advantage of

removing the associated boundary layers. Indeed, their presence imposes a severe upper bound
on the maximum topography height ϵt that can be considered in our code (the perturbation
approach requires ϵt to be smaller than the boundary layer thickness). By contrast with DNS, the
perturbation approach enables handling the MHD topographic coupling in the planetary-relevant
inviscid limit. This has been exploited by previous studies that have considered linear solutions
under various hypotheses, to simplify the equations or obtain analytical results. For instance, we
have reproduced (not shown) previous non-magnetic atmospheric [22] and oceanic [4] results, as
well as classical hydromagnetic wave dispersion relations [5]. Furthermore, we have successfully
validated our topography-driven MHD flows against previous works [11–13] by considering the
various assumptions summarised in Table 1.

For the quite large CMB topography wavelength of ∼ 600 km considered here, figure 4(a)
compares our topographic stress results with studies that are also using β-plane approximations,
i.e. Jault (2020) [12] and Braginsky (1998) [11]. Because of the assumptions of these two previous
works (Rm−1 ≫RoAl−2 for [11], Rm−1 ≫Al−2Fr2 for [12]), these three models differ in the
limit of small Rm−1 but agree for large Rm−1 values, notably at Earth’s core parameters. For
large topography wavelength, the β-terms are crucial, as illustrated in figure 4(b) (compare
dashed black and red curves). In a certain range ofRm, the model built in the limit Fr≪ 1 allows
however to retrieve the correct boundary stress, even without the β-plane terms (compare orange
and dashed black curves).
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Figure 4. Stress as a function of Rm−1 (the vertical dashed line shows a realistic geophysical value Rm= 12.5). (a)

Comparison of our model with the ones of Jault (2020) [12] (dashed blue) and Braginsky (1998) [11] (green) which both

include β-plane effects. (b) Comparison of ⟨Fx⟩ calculated with (black dashed) and without β terms (χ≡ 0, red and

orange solid). The limit Fr≪ 1 (orange) allows us to recover the estimate obtained with the β term for Rm−1 in 0.01−
1. Parameters: Ro= 1.37× 10−5, Al= 2.24× 10−2, χ= 2.86× 10−2, u0 = 1x b0 = 1z , θ= π/4, η̃−1 = 0 and

h= ϵt sinx.

(b) Beyond linear flow solutions
Higher-order solutions are desired for their better accuracy, possibly allowing larger topography
heights, but also because they can quantify the validity limits of lower-order solutions. Yet, the
associated numerical cost can quickly become prohibitive. Figure 5(a) shows indeed that the
number of harmonics involved in the calculation grows exponentially with the order. Moreover,
this figure also shows that the number of harmonics can already be quite large at the lowest
order m= 1 for the topography height. Having optimised our implementation, our code is now
typically capable of calculating order 3 hydromagnetic solutions with 3D topographies (requiring
∼ 1000 harmonics). One can now use these higher-order solutions to quantify convergence with
the order. For instance, looking at the residual error on the non-penetration boundary condition,
figure 5(b) shows that our perturbation-based method only converges below a certain value ϵct
of ϵt, and ϵct being nearly independent of m. But the error can actually be already quite large for
ϵ < ϵct , the case N = 20Ω of [13] requires an order m= 3 to reduce the error around 10%. These
convergence issues are actually related to the smallest length scale of the problem (vertical dashed
lines), either originating from the geometry or from the values of k(j,k)z . In the case considered in
Figure 5(b), this limit is related to stratification through max(k

(j,k)
z ), which is proportional to

Fr−1 for strong stratification [12]. When ϵ < ϵct , Figure 5(b) also confirms that higher orders allow
the use of higher topographies for the same accuracy (e.g. one order of magnitude larger between
orders m= 1 and m= 3). As allowed by our approach, considering such larger topography
heights may be important to account for geophysical observations [12]. As an explicit illustration
of the accuracy gain provided by higher orders, Figure 6 compares the flow at order 1 and 4 for
a typical hydromagnetic calculation. The flow is notably modified near the boundary to better
ensure the non-penetration boundary condition.

(c) Topographic stress regimes
Thanks to our efficient numerical method, we can perform a systematic survey of hydromagnetic
topographic stresses for different topography shapes and wavelengths. We exhibit various
regimes and sharp transitions when plotting the stress Fx as a function of Ro and the interaction
parameter Rm/Al2 (figure 7), keeping the Lehnert number Le=Ro/Al constant. The stress
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Figure 5. (a) Number of harmonics vs order m (at n= 0, see equation 2.11), for a steady basic flow u0 = 1x and

an inviscid semi-infinite fluid (blue) or a viscous fluid between two boundaries (red). Topography is either a ridge (h=

cos(kxx), solid lines) or 3D (h= cos(kxx) cos(kyy), dashed). The basic magnetic field is either zero (squares) or not

(circles, b0 = 1z ). Horizontal lines: typical values for previous works [12–14] based on linear perturbations (dotted) and for

one-day computations using our code on a laptop (dashed). (b) The normalised mean residual for the boundary condition

u · n= 0 versus ϵt for three different orders of topography perturbation m (at n= 0). Circles: typical cases [13] with

N = 20Ω (blue) and N =Ω (red). Vertical dashed lines: smallest length scale at m= 1. Grey shading: high residual or

diverging series. Parameters : see table 2, with η̃−1 = 0.

Figure 6. Flow streamlines and pressure field at order 1 (left) and order 4 (right). Parameters: Al= 0.022, Rm= 12.5,

Ro= Fr= 1.37× 10−5, Re−1 = 0, χ= θ= 0, ϵt = 6× 10−3 with an insulating solid (η̃−1 = 0) with 2D topography

models z =−ϵt cos(x), u0 = 1x and b0 = 1z .

on the boundary is due to dissipative processes, but also to radiated waves, which exist for
specific control parameters. Considering the Earth’s core radiusR= 3486 km and the topography
wavelengths k̃−1 = 5 km, we first show (top figures) the stress for a ridge topography, with χ= 0

(f-plane, figure 7(a)) and with traditional β-plane effects (figure 7(b)). Then we investigate 3D
topography (bottom figures), with either traditional or non-traditional β-plane approximations
(respectively, figure 7(c) and 7(d)). In these figures, typical values for the Earth’s core and oceans
(see Table 2) are also indicated to illustrate the strong influence of the magnetic field on the
stress (even with insulating boundaries). For oceanic application (R= 6371 km) the topography
wavelengths is k̃−1 = 9 km since χ is fixed.
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Parameters k̃−1 = 5 km k̃−1 = 100 km Glane & Buffett (2018) [13]
Ro 2.74× 10−4 1.37× 10−5 4.32× 10−4

Fr 2.74× 10−4 1.37× 10−5 2.16× 10−5 - 4.32× 10−4

Rm 6.25× 10−1 12.5 9.92

Al 2.24× 10−2 2.24× 10−2 8.86× 10−2

χ 1.43× 10−3 2.86× 10−2 0

Table 2. Parameters used in this study (typical for Earth core-mantle boundary), and in Glane & Buffett (2018) [13].

Figures 7 show sharp changes of the stress as a function of Ro and Rm/Al2. We delineate
regions in the parameter space, which each corresponds to the propagation of different kinds of
MHD waves. We have identified the waves that contribute the most to the total stress (see section
3(d) and Supp. Mat.) and reported their names in figure 7. The parameter space is divided in two,
on either side of Rm/Al2 = 1 (black dashed line). We characterize these regions by considering
the asymptotic limitsRm/Al2 ≫ 1 (negligible diffusion in the induction equation, i.e. ideal MHD)
and Rm/Al2 ≪ 1 (negligible role of the magnetic field i.e. hydrodynamic case). This helps us to
find the limits of the major regions using the dispersion relation of waves (for further details, see
section 3(c)).

In the hydrodynamic limit, the limit of propagation of inertial gravity waves (red dotted line)
can be written as

Ro> 2 cos θ (3.1)

in our limit of interest Fr < 1. We find significant stress in the presence of the internal waves
that are almost independent of Ro. In the opposite case Ro< 2 cos θ, for which the waves are
evanescent, the stress is negligible.

In the MHD case Rm/Al2 ≫ 1, the vertical dashed red line,

Al= 2kHFr
−1 cos θ, (3.2)

corresponds to the transition between MAC (Magneto-Archimede-Coriolis) waves on the left and
internal waves, for Fr≪ 1 and Ro≫ 1. This gives the transition from Alfvén waves to internal
waves. For Ro≪ 1, magnetic effects are important for the stress when the Elsasser number Λ=

RoRmAl−2 cos θ, which compares the magnetic and Coriolis forces, is larger than 1 (dashed-
dotted line). In this domain, the stress indeed increases as Al−1, a measure of the magnetic field
strength.

A new family of waves, the Rossby waves, arises in the β-plane model (compare 7(b) to 7(a)). In
the hydrodynamic case, the force becomes driven by Rossby waves (modified by the stratification)
when

k2HRo< 2χ sin θ, (3.3)

shown by the dotted blue line. This hydrodynamic regime now extends to Λ= 1. In this domain,
the stress increases directly with Ro−1/2 and is independent of the magnetic field. A domain of
evanescent inertial gravity waves remains between the regions where Rossby and internal waves
propagate. For Λ> 1, the Rossby waves are significantly modified by the magnetic field, hence
named Rossby-MAC, yielding a stress that is weaker than in the f-plane case.

In the case of 3D topography, these Rossby-MAC waves only exist in a finite range of Ro
(figures 7(c) and 7(d)). This extent of this domain is significantly shrunk for Ω given by equation
2.4 (compare figure 7(c) calculated with equation 2.3 for Ω and figure 7(d)). This domain is
bounded by

k2HRo= χ sin θ

[
1±

√
1−ϖ(Fr|ky|kH/χ)2

]
, (3.4)

with ϖ= 1 and ϖ= 9 when respectively using equations (2.3) and (2.4). The derivation of
these limits is detailed in Supp. Mat. and are found imposing a zero determinant for the
dynamical equations, using the calculated kz values. Equation (3.4) illustrates the importance
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Figure 7. Normalised stress (colours) as a function of interaction parameter Rm/Al2 and Ro at θ= π/4 for (top) a

ridge h= ϵt cosx, or 3D topography (bottom). Figure (a) is with Ω = cos θ1z (f-plane) and b0 =− cos θ1z . In figure

(b) Ω = (cos θ + χ sin θ)1z , and (c,d) are with non-traditional β-plane approximation. Figures (b, c, d) have a magnetic

field b0 = sin (θ)/21y − cos θ1z (equation 2.4). The stress is shown χ= 0.0014, i.e. k̃−1 = 5 km for the core and

k̃−1 = 9 km for the ocean. The stars represent the Earth’s core (purple) and ocean (blue). The bounds for internal waves

are the red dotted line (equation 3.1) and the dashed one (equation 3.2). The bounds for Rossby waves are the blue-

dotted line (equation 3.3) and the dashed blue ones (equation 3.4). The dashed-dotted black line is Λ= 1. The orange

dashed lines are Rm= 1015 and Rm= 0.625, for which figures 9(a) and 9(b) respectively, have been obtained. Within

each zone, the type of wave that contributes the most to the total stress is written. Parameters: η̃−1 = 0, u0 = 1x,

Le= 0.0122 (see Table 2 for others parameters at corresponding wavelengths).

of 3D topographies (ky ̸= 0) and density stratification (Fr ̸= 0) when considering χ ̸= 0. We have
also investigated a larger topography wavelength k̃−1 = 100 km for the core (χ= 0.0287, leading
to k̃−1 = 183 km for the ocean). Figures 8(a) and 8(b) can respectively be compared with figures
7(a) and 7(b). We find that in the simplest case (f-plane, ridge topography) our results are mainly
unchanged. The domain of MAC waves extends to a weaker magnetic field (larger Al) with
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(a) (b)

Figure 8. Normalised stress (colours) as a function of interaction parameter Rm/Al2 and Ro at θ= π/4 for

(left) a ridge topography h= ϵt cosx, b0 =− cos θ1z and Ω = cos θ1z (f-plane), and (right) a 3D topography

h= ϵt cosx cos y,b0 = sin (θ)/21y − cos θ1z and non-traditional β-plane (equation 2.4). The stress is shown for

χ= 0.0287, i.e. k̃−1 = 100 km for the core and k̃−1 = 183 km for the ocean. The stars represent the Earth’s core

(purple) and ocean (blue). Lines are the same as the ones of figure 7. Parameters: η̃−1 = 0, Le= 6× 10−4, u0 = 1x

(see Table 2 for others parameters at corresponding wavelengths).

increasing topography wavelength. For 3D topography and non-traditional β-plane, the domain
of Rossby-MAC waves extends to a wider range of Ro, in agreement with equation (3.4).

(d) Wave-driven stress
The boundary stress originates either from wave generation or from Ohmic dissipation. To
disentangle these effects, we compare in figure 9 the stress for the asymptotic limit Rm≫ 1

(figure 9(a)) of weak diffusion (the stress being strictly zero for Rm−1 = 0) and for a moderate
Rm= 0.625 (figure 9(b)). We thus investigate a 2D section of the parameter space (Ro, Al, Rm)
that is different from the section explored in figures 7 and 8. At large Rm (figure 9(a)), the limit
between the hydrodynamic and MHD cases corresponds to a constant Lehnert number instead
of Λ= 1 for Rm=O(1) or lower (figures 7, 8 and 9(b)). In some parts of the space (Ro,Al), the
figures 9(a) and 9(b) are identical, showing that the stress has to be attributed to wave generation
only. Conversely, we find a parameter range for which the stress varies as Rm−1 (hatched zone),
showing that it comes from Ohmic dissipation. This corresponds to the range of Rossby number
delimited by equation (3.4), where MAC-Rossby waves propagate. The stress is thus dominated
by Ohmic dissipation in this zone of interest for the Earth’s core.

To understand better the mechanism at play in the establishment of stress, we have carried out
a more detailed study of the waves arising in figure 7(d). We show in figure 10 the vertical wave
numbers kz as a function of Ro for a large interaction parameter (RoAl−2 = 10) and a fixed Le=
0.0122 (same as in figure 7(d)) and compare them with the solution of the theoretical dispersion
relation in the diffusionless limit. We also show the relative contribution of each wave to the total
tangential stress. Because curvature effects related to the β-plane are not easily visible in the real
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(a) (b)

Figure 9. Normalised stress as a function of Al and Ro (θ= π/4, η̃−1 = 0). The basic velocity is u0 = 1x and b0 =

sin (θ)/21y − cos θ1z , with a non-traditional β-plane, other parameters are those of table 2 for k̃−1 = 5 km. (a) ideal

MHD approximation, Rm= 1015, black solid line is Le= 7.5× 10−4, delimiting the hydrodynamic and MHD zones.

(b) Diffusive case, Rm= 0.625, dashed-dotted line is Λ= 1. Hatches correspond to the region where the stress is

proportional to dissipation (∝Rm−1). The black dashed line shows Le= 0.122, for which figure 7 has been calculated.

Vertical lines and symbols as in figure 7.

part of kz 10(a), we show the imaginary part of kz in figure 10(b). Our results superimpose almost
exactly to dispersion relation MAC waves and Rossby-MAC (not shown) in figure 10(a) and
10(b) respectively. The remaining difference originates from diffusion. In figure 10(a), the stress is
mainly driven by the wave of greatest kz , except above Al given by equation (3.2). This branch
consists of MAC waves since it involves all magnetic field, rotation, and stratification. Another
branch is well described by the dispersion equation for Alfvén waves (purple dashed curve). It
has a small ℜ(kz) and contributes negligibly to the total stress. For large Al, the waves with the
smallest ℜ(kz) are responsible for most of the stress. Their wavenumbers obey the dispersion
relation of internal waves, and the stress depends only on Fr. Overall, stratification is key in
all stress mechanisms investigated here. Including β-plane (figure 10(b)), the MAC branch still
carries most of the stress. The only difference is the emergence of a domain where Rossby-MAC
waves propagate. Looking at figure 7(d) we see that it corresponds to a sudden drop in the stress.
In this parameter range, the solution consists of a combination of MAC and Rossby-MAC waves,
the MAC waves carry most of the stress but have a negligible amplitude compared to Rossby-
MAC waves. Rossby-MAC waves are indeed very inefficient at driving boundary stresses and
are key for this stress drop. By contrast, in the hydrodynamic limit, the Rossby waves at low Ro

are very efficient in generating stress (figure 7(d)). In the supplementary figure, we also provide
kz and the relative contribution of each wave in the hydrodynamic limit.

Finally, we focus on the large stress values that are obtained at the limits of Rossby and
Rossby-MAC wave domains (equations 3.3-3.4), which are too abrupt to be seen in Figure 7(d).
This is illustrated in figure 11(a), which shows the normalised stress along the horizontal lines
RmAl−2 = 1010 in the ideal MHD limit (orange) and RmAl−2 = 10−10 in the hydrodynamic
limit (blue). At the frontiers of Rossby wave domains, we observe sharp increases that suggest
mode resonances. Calculating the eigenmodes of our problem, we obtain free steady (MAC-)
Rossby modes that can be excited by the topography-forced waves. Looking at the corresponding
wavenumber (Figure 11(b)), at resonances, the wavevector is found to be perpendicular to the
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Figure 10. Absolute value of the real (a) or imaginary (b) part of the vertical wavenumbers kz as a function of Ro. Our

results are colour-coded to show the relative contribution of each kz to the total stress. Other lines show diffusionless MHD

wave dispersion relations [23]. The red vertical dashed line is equation 3.2, and the blue ones correspond to equation 3.4.

Parameters: same as figure 7(d), with RmAl−2 = 1010.
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Figure 11. (a) Normalized stress vs Ro for RmAl−2 = 1010 (ideal MHD, orange) and RmAl−2 = 10−10

(hydrodynamic limit, blue), (b) Real part of vertical wavenumber vs Ro. Vertical lines correspond to theoretical limits

for Rossby waves (equation 3.3, dashed blue) and MAC-Rossby waves (equations 3.4, dashed orange). Horizontal lines

are k ·Ω = 0 (green dashed line), and k · b0 = 0 (purple dashed line). Parameters: same as figure 7(d).

rotation vector in the hydrodynamic case (green dashed line) and perpendicular to the magnetic
field (pink dashed line) in the ideal MHD limit (this helped us to find equation 3.4).

4. Discussion
We now discuss how we can extend our model to planetary-relevant geometries and relate our
work to previous studies. The force balance we have investigated is only possible with mass
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Figure 12. Magnitude of Lorentz (blue/purple), Coriolis (black/green) and (u · ∇)u (orange/red) forces as a function of

Ro, calculated at the surface (through the bumps, see equations 4.1, solid lines) and in the fluid interior (dashed). The grey

line is the boundary pressure stress. The solid vertical line is Λ= 1, the dashed blue one is Le= 1. Parameters are those

of table 2 for k̃−1 = 100 km, θ= 0, η̃−1 = 0. Calculations are for a ridge topography within an f-plane approximation.

fluxes and electrical currents at infinity, which cannot occur in bounded geometries. Our second-
order results enable us to calculate these fluxes in the bulk and not only at the boundary. We also
investigate how to extend the results obtained for semi-infinite fluid to a duct geometry. We can
thus study modes that are not confined to the wall vicinity. A short subsection is devoted to the
effects that arise when the solid domain is electrically conducting. Finally, the scale dependence
of the topographic stress is discussed for the core-mantle coupling.

(a) Electric currents and flows at infinity
We have been able to calculate mean stresses, that are not balanced by an inertia term ∂tu.
Similarly, we find that the magnetic stress on the fluid side is non-zero, although the mantle is
electrically insulating. We interpret these results as a limitation of periodic box models: Coriolis
and Lorentz mean forces balance the mean pressure force. They arise from the mean flux of
mass and electrical currents at infinity. The linear solution induces second-order mass fluxes and
electric currents across the bumps [12] as

U =

∫∫
S
uy(x, z) dS =

∫
h(x)uy(x, 0) dx, J =

∫∫
S
jy(x, z) dS =

∫
h(x)jy(x, 0) dx, (4.1)

where S is a plane of constant y, and j the electrical current density ∇× b. These fluxes yield
mean Coriolis 2Ro−1ΩzU and Lorentz forces b0zJ . Since we calculate second-order solutions, we
are able to obtain the fluxes of mass and current in the fluid interior and compare them with the
fluxes at the surface (figure 12, where θ= 0 and a ridge topography are considered following [12]).
First, the Lorentz, Coriolis, and inertial ((u · ∇)u) forces in the interior cancel out. Second, the (u ·
∇)u contribution at the surface exactly balances its contribution in the interior as a consequence
of the no-penetration boundary condition and impressibility. Finally, we find that for Λ< 1 the
Coriolis force is stronger than the Lorentz force and vice versa for Λ> 1. In both cases, the surface
force predominates. Physically, this force tends to oppose the differential velocity between the
fluid and the solid. We need to include in our model the feedback of the force on the fluid and
solid velocities. Similarly, there will be a retroaction of the electrical field on the ambient magnetic
field.
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Figure 13. Normalized stress as a function of the distance between the two boundaries D, for different bottom boundary

shapes (Ro= Fr= 1.37× 10−5, θ= π/4, η̃−1 = 0). The basic velocity is u0 = 1x and b0 = sin (θ)/21y −
cos θ1z . The top boundary is h= ϵt cosx, and the bottom boundary is h2 = ϵth̃2 cos (x+ ϕh)−D. When not

specified otherwise, h̃2 = 1 and χ= 0.0286. Other parameters are the ones of Table 2 for k̃−1 = 100 km.

(b) Duct geometry
In his 1998 paper, Braginsky [11] proposed a model of a stratified layer at the top of the core. To
mimic a sharp density jump between this layer and the well-mixed convective bulk, he considered
a solid second boundary at this transition. Even if this does not model perfectly a two fluids
interface, this avoids the problems that can be encountered in a semi-infinite domain, when the
waves propagate further than the fluid layer we want to model, or even over distances about the
core radius. Besides, such a second boundary is relevant to laboratory experiments.

Therefore, we have introduced a second solid boundary in our model. In figure 13 we show
the stress as a function of the distance D between the two boundaries. As expected, the second
boundary does not affect the stress when D is large enough (here for a fluid layer thicker than
10 km). Conversely, the results are more complex for a thinner fluid layer. Focusing on D≪ 1,
the stress on the top boundary vanishes when the topographies are in phase whereas it diverges
otherwise (a second flat boundary being seen as in phase),

⟨Fx⟩/ϵ2t ∝ f0D
−1 + f1D + f2D

2 +O(D3), (4.2)

for h/ϵt = cosx and h2/ϵt = h̃2 cos (x+ ϕh)−D. Taylor expansion coefficients (4.2) for D≪ 1

scale as f0 ∝ h̃2 sin(ϕh)/(χ− χc), f1 ∝ (1− h̃2) and f2 ∝ χcχ/(χ− χc), with χc the solution of
equation (3.3). Interestingly, the coefficients f0 and f2 can be either positive or negative according
to the value of χ. This corresponds to the presence or not of MAC-Rossby waves. This differs from
the semi-infinite case, where the pressure on the fluid side is always opposed to the basic flow.
When the two boundaries are in phase (ϕh = 0), axially invariant geostrophic motions are part of
the solution. They have been shown in another context to be ineffective in generating pressure
stress [24].

(c) Electrically conducting solid
In this section, we get closer to geophysical applications. To do that, we will consider a conducting
solid to model the Earth mantle, and variations with the latitude of Ω and b0. Finally, we
cover a spherical surface with local planes and integrate them to obtain global quantities. To
localise magnetic perturbation in the mantle close to the surface, we consider an oscillating
flow u0 = sin θ cos (ωt)1x, corresponding to a solid body rotation in spherical geometry. Buffett
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Figure 14. Normalised mean dissipation as a function of η−1, at order in topography m= 0 (a), corresponding to a

flat boundary, and m= 2 (b). m= 1 terms are identically zero. Dissipation is calculated for a set of ω (colour), with

u0 = sin θ cos (ωt)1x. The vertical dotted line is η̃−1 = 1. Dashed lines are the theoretical results for total (black), fluid

(blue) and solid (orange) dissipation, after the results of Buffett (2010) [14] in figure (a), and after our results at ω= 106

in figure (b). Parameters : b0 = sin (θ)/21y − cos θ1z , Ω is from equation (2.4) and θ= π/4. Other parameters are

those in Table 2 for k̃−1 = 100 km.

(2010) suggested combining topographic and electromagnetic coupling to explain the out-of-
phase component of annual nutation [14]. He used total dissipation to estimate the coupling
strength. We calculate the dissipation φ as an integral of Rm−1 η̃j2 in the solid and Rm−1 j2

in the fluid.
Considering first the orderm= 0 corresponding to a flat boundary, we calculate the dissipation

due to the electromagnetic coupling as a function of frequency (figure 14(a)). All curves
superimpose because the dissipation scales as ω−1/2. Our results agree in the whole range with
predictions obtained from equations (19) and (24) of Buffett (2010) [14], which provides the mean
dissipation in the solid (dashed orange), in the fluid (dashed blue) and their sum (dashed black).
The topographic coupling leads to an additional dissipation (figure 14(b)), which scales as ϵ2t . In
the limit ω≫ 1, the dissipation scales as O(ω1/2). It occurs mainly in the solid for η > 1 and in the
fluid otherwise. The vertical wave numbers kz obtained vary as ω1/2 for ω≫ 1. The stress scales
as kz , which explains the observed scaling φ∝

√
ω. However, the dissipation cannot increase

indefinitely with ω and, in our model, it is limited by the bound on acceptable ϵt <O(k−1
z ).

Therefore, the dissipation remains bounded by O(ω−1/2) in our model.

(d) Scale dependence of the core-mantle topographic stress
Combining β-plane and 3D topographic effects, we can span a wide range of length scales,
from the viscous boundary layer thickness to the Earth’s core radius. For a given height of the
topography, figure 15 shows that the topographic mean stress varies in a non-trivial way over
several decades. The sharp variation at 30 km corresponds to the transition between Rossby-
MAC and MAC waves given by equation (3.4). The mean normalised stress ⟨F̃x⟩/h̃20 keeps the
same order of magnitude from 10 m to 50 km. Our results can be combined with seismological
estimates of Earth’s core topography [25–27] to provide the global torque on the core. Figure
15 gives the tangential stress for an illustrative but realistic example of core-mantle topography,
which increases with the horizontal length scale l= 2πk̃−1

x until l= 300 km. We find that the peak
in the stress coincides with the value of l for which the topography amplitude stops increasing.
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Figure 15. Topographic (dimensional) mean stress ⟨F̃x⟩/h̃2
0 = ρrŨ2⟨Fx⟩/h̃0 normalised by the topography h̃0 =

ϵt/k̃x (blue), or for a CMB topography model (red) as a function of the topography wavelength l= 2πk̃x
−1

= 2πχR for

the Earth’s core parameters. Parameters: h= ϵt cosx cos y, ρr = 104 kg.m−3, Ũ = 10−4 m.s−1, B = 5× 10−4 T,

η= 0.8 m2.s−1, R= 3486 km, Ω0 =N = 7.29× 10−5 rad.s−1, θ= π/4, η̃−1 = 0. Topography model for the

Earth’s CMB [25–27]: h̃0 = 0.022l0.83 for l < 300 km, and h̃0 = 28l−0.42 otherwise (with l and h̃0 in km).

5. Conclusion and future works
We have developed a generic approach to calculate efficiently the flows over a bumpy boundary,
in various cases and within parameter ranges that were previously difficult to achieve. We have
reproduced the linear results of the literature and went further by adding weakly non-linear
corrections, which enabled us to alleviate several previous limitations. We have investigated the
physical effects at play in the topographic stress and characterised the fluid waves involved,
highlighting regime changes and non-trivial variations. Notably, we have shown the uttermost
importance of considering 3D topographies and effects of curvature that yield results qualitatively
different from the ridge topography. We have explored inviscid laminar regimes, although much
remains to be done on hydromagnetic topographic coupling. For the oceans or the atmosphere,
turbulence and flow separation can drastically change the stress on the wall. Even if we have
included weakly non-linear terms, they do not account for these effects, which can only be
managed by DNS or laboratory experiments (but for parameters far from planetary core ones).

While we have made considerable efforts to better model global geometry effects, some
limitations remain, associated with periodic box models. In such steady models, Jault (2020)
showed for instance that, while mean pressure forces balance with Coriolis and Lorentz mean
forces, the flow linear solution forces second-order mass fluxes and electric currents between the
bumps. Our full-order two calculations are required to provide the correct balance of these mean
fluxes. The problem at infinity remains but could be solved by relaxing the steadiness assumption.
One possible way forward consists of coupling a local estimation of the instantaneous stresses
at the boundary (knowing u0 and b0 as done in this study) with a model (possibly axially
symmetric) in spherical geometry for the time evolution of u0 and b0 as a function of the surface
stresses.

The different spatial missions also provide geodetic and rotation data on other planetary
bodies, showing that they also host liquid layers such as subsurface oceans [28–32]. Efforts have
already been made to infer the geometry and the dynamic of these oceans and their coupling with
the solid layers. These subsurface oceans probably have interesting topographic coupling effects
to explore, which can be investigated with our model.

Data Accessibility. The code "ToCCo" for Topographic Coupling at the Core boundaries, is available at
gitlab.com/monvilre/tocco

gitlab.com/monvilre/tocco
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