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Gillet, et al. (2019). 
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Can the small scale topographic coupling explain:
- The decadal changes in the Length-of-Day (Glane and Buffett 2018, Jault 2020) ?
- The out of phase component of the retrograde annual nutation of 
   the Earth’s rotation axis (Buffett 2010) ?

How well can a local perturbative model help us to understand these 
measurements, and what are its limitations ?



  

8/24

Geometry of 
the problem

Spherical shell → Cartesian frame

Key effects:
-Rotation
-Magnetic field
-Stratification

CMB



  

9/24

Geometry of 
the problem

Basic State:

  -  Velocity:  

  

- Magnetic field:

  - Density:

                           
  
   

→   or



  

Equations of motion
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Mass conservation

Magnetic field 
(Induction)

Incompressible fluid

Navier-Stokes 

Magneto-hydro-dynamic equations (MHD), in Boussinesq approximation

Conservation of magnetic flux
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Mantle

Core
is the topography height divided by a 
typical length scale
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Methods
Solving equations with with a weakly non 
linear perturbation approach 

Limited by a small parameter 
→ Topography height
Glane and Buffett (2018) : ~30-50m
Buffett (2010) : ~100m

Quasi linear variation when the serie is convergent 

Higher orders of perturbation
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Derive the equations Solve systems

2 steps

Sympy : symbolic mathematics mpmath : arithmetic with 
arbitrary precision
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Derive the equations Solve systems

2 steps

My code : ToCCo

Sympy : symbolic mathematics mpmath : arithmetic with 
arbitrary precision
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Streamlines = velocity

Results
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What is the value for (h,N) required to explain the observed variation of the 
length of the day ?

- Steady and uniform flow 

- Insulating mantle

integrated = integration 
with latitude, taking into 
account the variation of   
and 
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What is the value for (h,N) required to explain the observed 
dissipative coupling ?

- Oscillating flow with 
diurnal period

- Conducting mantle
  → electrical conductivity 
     ratio : 

- At the pole :  

integrated = integration 
with latitude, taking into 
account the variation of   
and 
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Comparing at the same parameters 

-Integrated with latitude

-Conducting mantle
  → electrical conductivity      
  ratio : 

- At the pole :  
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Conclusion 

- Couple our results with Earth model of rotation
- Study the convergence radius of the perturbative model 
and constrain its limit of applicability.

- We can, with our model, explore a wide panel of parameters in a 
consistent manner
- developed at a higher order of perturbation
- Our model, in its simplest form, does not explain simultaneously 
the two sets of data (LOD, nutation)

and Perspectives

Work  funded by the European Research Council (ERC) under the European Union’s Horizon 2020 program (THEIA project, grant No. 847433).
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Magneto-hydro-dynamic equations (MHD)

Joule Dissipation

Inertia Coriolis force (with Beta- 
plane approximation)

Reduced pressure 
gradient Buoyancy Lorentz force

Inviscid fluid

Coupling term

Equations of motion


