Eu,o;;f;'ij;;h Glela s @ QTerre

sssssssssssssssssss pean Commission Institut des Sciences de la Terre

Topographic effects in a stratified
layer at the top of the core

IAGA-IASPEI Virtual Conference, 21st — 27th August 2021

Rémy Monville, David Cébron, Dominique Jault — 2021
ISTerre, Université Grenoble Alpes, CNRS

Work funded by the European Research Council (ERC) under the European Union’s Horizon 2020 program (THEIA project, grant No. 847433).



Variations qf
the Earth’'s
rotation

Nutation Precession




External forcing
C 3¢
PFA

THEN :
/= < Postglacial rebound

Variations of the
Earth's rotation o

«°

Nutation

lectromagnetic
y Geodynamo

Vol * Hydrology

Atmospheric dynamics

Karatekin, O. et al. (2011)




Exchanges of
angular Core contribution to the variation of the length of the day (LOD)

momentum '
E
a 2
@)
. |
Core coupling: @
S 01
- Electromagnetic S
o .g
- Viscous = —2]
. 1900 1920 1940 1960 1980 2000
- Gravitational

Time (yrs)

Gillet, et al. (2019).
- Pressure torque on

small scale topography



Exchanges of
angular Core contribution to the variation of the length of the day (LOD)

momentum '
E
a 2
@)
. |
Core coupling: @
S 01
- Electromagnetic S
o .g
- Viscous = —2]
. 1900 1920 1940 1960 1980 2000
- Gravitational

Time (yrs)

Gillet, et al. (2019).
- Pressure torque on

small scale topography



Exchanges of
angular Core contribution to the variation of the length of the day (LOD)

momentum '
E
a 2
@)
. |
Core coupling: @
S 01
- Electromagnetic ks
o .g
- Viscous = —2]
. 1900 1920 1940 1960 1980 2000
- Gravitational

Time (yrs)

Gillet, et al. (2019).
- Pressure torque on

small scale topography



Motivations

Can the small scale topographic coupling explain:
- The decadal changes in the Length-of-Day (Glane and Buffett 2018, jault 2020) ?
- The out of phase component of the retrograde annual nutation of

the Earth’s rotation axis (Buffett 2010) ?

How well can a local perturbative model help us to understand these

measurements, and what are its limitations ?
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Geometry of
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Equations of motion

Navier-Stokes

T

prDyU = —prye, x U = Vp+ uV-U + pg + J x B,

Mass conservation ——» atp -+ (UV)p — O,

é\/&ajnetic f)ield , 8tB — 7’]V2B +V X (U < B)’
Induction

Incompressible fluid —» V - U = O,

Conservation of magnetic flux —» V - B = O,

Magneto-hydro-dynamic equations (MHD), in Boussinesq approximation
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Methods

Solving equations with with a weakly non Limited by a small parameter

linear perturbation approach > Topography height

Glane and Buffett (2018) : ~30-50m
Buffett (2010) : ~100m
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Results
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What is the value for (h,N) required to explain the observed variation of the

length of the day ?

- Steady and uniform flow

- Insulating mantle

integrated = integration
with latitude, taking into
account the variation of )
and Bg
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What is the value for (h,N) required to explain the observed

dissipative coupling ?

- Oscillating flow with

diurnal period

- Conducting mantle
> electrical conductivity
= 500

O.CO’I“G

ratio :

Omantle

- Atthe pole: By = 0.5 mT

integrated = integration
with latitude, taking into

account the variation of €
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Comparing at the same parameters
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Conclusion

- We can, with our model, explore a wide panel of parameters in a

consistent manner
- developed at a higher order of perturbation

- Our model, in its simplest form, does not explain simultaneously

the two sets of data (LOD, nutation)

and Perspectives

- Couple our results with Earth model of rotation
- Study the convergence radius of the perturbative model

and constrain its limit of applicability.
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Equations of motion

Inertia

prDtU

Coriolis force (with Beta-

plane approximation)

gradient

Inviscid fluid

Reduced pressure f

prxez X Ul —

Vp

Lorentz force

+ u%Jr P +

0B =

JxB

nV°BH |V x (U x B)

)
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Joule Dissipation  ¢oypling term v . U p— O)

Magneto-hydro-dynamic equations (MHD)



