Topography-driven flows in magnetized planetary layers

Rémy Monville, David Cébron, Dominique Jault ISTerre, Université Grenoble Alpes, CNRS

22-23 Nov 2023 Graceful meeting Toulouse

Inversion of rotation data provide constraints on the coupling between the liquid core and the mantle.

Coupling mechanism are still disputed and struggles to explain all the nutation and LOD measurements **simultaneously**

Earth core-mantle dissipative coupling

Is there a topography at the CMB?

CMB seismology: Koelemeijer 2021 Simulation: StagYY Simulations, courtesy of Thomas Frasson

Seismological studies suggest the existence of large scale topography

Mantle dynamics simulations also give some insight on the smaller scales

Both are in agreement

Method

How to model the topographic coupling at the core mantle boundary?

Method

$$B_0 = \begin{bmatrix} 0, & \sin \theta / 2, & -\cos \theta \end{bmatrix}, \quad for the second states and the second states are second states are$$

)

$$B_{0} = \begin{bmatrix} 0, & \sin \theta / 2, & -\cos \theta \end{bmatrix}, \quad \text{dipote}$$
$$\Omega = \begin{bmatrix} 0, & \sin \theta - 2\chi y \cos \theta, & \cos \theta + 2\chi z \cos \theta + \chi y \sin \theta \end{bmatrix},$$

Method

Perturbation method at higher order

Error on the non-penetration boundary condition

Does pressure stress vary differently within the various planetary fluid layers

Back to data : Scale dependence of the stress

Monville,Cébron & Jault, Submitted

Back to data : Length of the day

With these variations and **our new features** we expect to **reconcile length of day and nutation data**.

Conclusion

- We developed a **robust model** able to solve many types of problem **efficiently**.

- **High order** perturbation : better **accuracy** & provides the **limits** of this method

- New insight on the topography **coupling** and **topographic waves** in the Earth core context

- Automated method: easy to **optimise on** geophysical data.

- In the future, we plan to link up with **rotating table experiments**.

