

Beyond the convection dynamo paradigm

David Cébron¹

¹ISTerre, CNRS, Univ. Grenoble Alpes

J. Vidal², N. Schaeffer¹, J. Noir³, R. Laguerre⁴, R. Monville¹, R. Hollerbach²

²Univ. of Leeds, ³ETH Zurich, ⁴Obs. de Bruxelles,

ENS Lyon, March 2019

David Cébron

Outline

- 1. Questioning the thermo-solutal dynamo paradigm for the Earth
- 2. Questioning the thermo-solutal dynamo paradigm for the Moon
- 3. Questioning the thermo-solutal dynamo paradigm beyond the Moon

The convection dynamo paradigm

• Currently for the Earth : convection

Schaeffer, HDR, 2015

Currently: convection

Ο

Temperature in the equatorial plane

- Today, convection probably powers the geodynamo ...
- But possible stratified layer! Debated presence but indirect clues :
 - <u>Geodesy</u> : **nutations** derived dissipation? (Buffett 2010, Glane&Buffet 18)
 - <u>Geomagnetic</u>: MAC waves detection claimed (Buffett 2014, Buffet+16)

AND revised (debated) larger estimates of the thermal conductivity question the usual convection model (marginally enough power)

Nimmo, ToG, 2015

Difficulties for the current geodynamo... and in the past?

 Rourke et al. (2017): "how to power convection in the core and thus a dynamo for the vast majority of the Earth's history remains one of the most pressing puzzles in geophysics"

Precipitation in the core: a **speculative** scenario

A try to save this beloved thermo-solutal model

O'Rourke & Stevenson (2016)

- SiO₂ can also play (better?) this role (*Hirose et al., Nature, 2017*)
- Speculative scenario requiring impacts
- Other unusual model exist : e.g. with a stratified BMO (Laneuville+18)

A little known double-diffusion in the Earth's core

• Early Earth precipitation

C,T

• Double diffusion?

Little known in this context but allow convection in a thermally stratified core!

How does-it work? Fast diffusion of T wrt. C

Instability well known in ocean & stellar physics

But very few studies with a **rotating spherical geometry** *(Manglik+10, Net+12, Bouffard's PhD)*

Double diffusion in the Early Earth's core?

• **Scales:** R, R²/v, T, C, such that
$$T_0(r) = \frac{1 - r^2}{Pr}$$
, $C_0(r) = \frac{1 - r^2}{Sc}$

• Equations

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\frac{2}{Ek} \mathbf{1}_{z} \times u - \nabla p + \nabla^{2} u \\
+ (Ra_{T} \Theta + Ra_{C} \xi) r \mathbf{1}_{r},$$

$$\frac{\partial \Theta}{\partial t} + (u \cdot \nabla)\Theta = \frac{1}{Pr} (2r \cdot u + \nabla^{2}\Theta),$$

$$\frac{\partial \xi}{\partial t} + (u \cdot \nabla)\xi = \frac{1}{S_{C}} (2r \cdot u + \nabla^{2}\xi),$$

$$\nabla \cdot u = 0,$$

$$Ra_T = \frac{\alpha_T g_0 \mathcal{Q}_T R^6}{6\nu\kappa_T^2}, \quad Ra_C = \frac{\alpha_C g_0 \mathcal{Q}_C R^6}{6\nu\kappa_C^2}, \qquad Ek = \frac{\nu}{\Omega_s R^2}, \quad Pr = \frac{\nu}{\kappa_T}, \quad Sc = \frac{\nu}{\kappa_C}$$

Codes: open-source, pseudo-spectral => SINGE (linear, by J. Vidal)
 & XSHELLS (non-linear, by N. Schaeffer)

David Cébron

Onset in a rotating sphere at L=Sc/Pr=10

Earth

Ek=10⁻¹⁵

Monville et al., GJI, subm.

David Cébron

Onset in a rotating sphere at L=Sc/Pr=10

Onset in a rotating sphere at the Earth's core values

Inviscid double diffusive onset!

Inviscid convection domain

Thus, DDC onset varies as Ek⁻¹

Since usual convection onset varies as **Ek**^{-4/3}

 \Rightarrow Onset drop ~ Ek^{-1/3}

 \Rightarrow Earth: drop of 10⁵

Inviscid double diffusive onset!

Monville et al., GJI, subm.

David Cébron

Eigenmodes at the onset

Large-scale inviscid double diffusive flow in the fingering regime

Non-linear regime?

Non-linear rotating double diffusive convection

Thermal (upper) & solutal (lower) buoyancy

Vorticity magnitude

Double diffusive structures & transport at L=10

Radko, 2013, non-rotating : -1/4

Bouffard, 2017, rotating: -1/2

=> Transition between 2 regimes

(weakly and strongly stratified)

Double diffusive structures & transport at L=10

Re based on

- the total NRJ (blue)
- the poloidal non-zonal NRJ (red)
 = proxy of the radial velocity

Monville et al., GJI, subm.

Double diffusive structures & transport at L=10

Zonal flows

- Far from RDDC onset, equatorially anti-symmetric zonal flow
- Well predicted by a purely linear mechanism

Zonal flows

Zonal flows

 $Pr = 0.3, Sc = 3, Ek = 10^{-5}$

Outline

- 1. Questioning the thermo-solutal dynamo paradigm for the Earth
- 2. Questioning the thermo-solutal dynamo paradigm for the Moon
- 3. Questioning the thermo-solutal dynamo paradigm beyond the Moon

Beyond the Earth, the Moon is the only body for which we have data constraining the planetary magnetic field evolution over a long timescale

A lunar magnetic field

Current Earth

Aubert, IPGP

- Global magnetic field
- Dynamical (internal) origin

A lunar magnetic field

Current Earth

Aubert, IPGP

- Global magnetic field
- Dynamical (internal) origin

Current Moon

Spatial data, Wieczorek, IPGP

- Local magnetic field
- Static (crustal) origin

A lunar magnetic field

Current Earth

Aubert, IPGP

- Global magnetic field
- Dynamical (internal) origin

Current Moon

Spatial data, Wieczorek, IPGP

- Local magnetic field
- Static (crustal) origin

Time evolution of the lunar magnetic field, recorded in the lunar rocks?

Paleomagnetic analyses of lunar rocks

Fuller & Cisowski, Geomagnetism (1987) Wieczorek et al., Rev. Miner. Geochem. (2006)

Paleomagnetic analyses of lunar rocks

Fuller & Cisowski, Geomagnetism (1987) Wieczorek et al., Rev. Miner. Geochem. (2006)

Convective dynamo models

MagLune project

Improved paleomagnetic data

Lunar precession history

Precession (angle α , rate P_o)

Dynamo model proposed by Dwyer et al. *Nature* 2011

David Cébron

Noir (2003)

Precessing spherical shells

- Viscous coupling only
- \circ Scales: r_o , $1/\Omega_0$, $\Omega_0 r_o (\mu \rho)^{1/2}$

Precessing spherical shells

 Solved with XSHELLS (open-source, spectral) : the world fastest spherical dynamo code

Schaeffer (2013, 2017), see the benchmark of Matsui et al. (2016)

Simulation parameters

Previously: no inner core (η=0) ~ 20 saturated simulations
 Tilgner (2005, 2007), Lin et al. (2015)

• This work : 10³ simulations Systematic study

	Lunar core	Simulations
flattening	2.5.10-5	0
E	3.10 ⁻¹²	10 ⁻⁵ – 10 ⁻³
Ρ	4.10 ⁻³	3.10 ⁻⁴ – 20
α	178°	30 - 150°
η	0-0.7	0-0.7
Pm	10 ⁻⁶ –10 ⁻⁵	0.3 – 3

Simulation parameters

Previously: no inner core (η=0) ~ 20 saturated simulations
 Tilgner (2005, 2007), Lin et al. (2015)

• This work : 10³ simulations Systematic study

Viscous boundary & conical layers

Noir et al. (2001) ; Le Dizès & Le Bars (2017)

Our simulations (XSHELLS)

=> Instabilities?

Cebron et al., GJI, in press

Viscous boundary & conical layers

Parametric instability: large-scale vortices

Similar to Lin et al. (2015)

Cebron et al., GJI, in press

Precession driven dynamos?

Dynamo capability?

E=3.10⁻⁴, Pm=2

- Small-scale field
- Multipolar field
- Field near boundaries

=> No hope?

Cebron et al., GJI, in press

• In the precessing frame: $u \rightarrow u + U_b$

Induction
$$\frac{\partial \vec{B}}{\partial t} = \frac{E}{Pm} \nabla^2 \vec{B} + \nabla \times \left[\left(\vec{u} + \vec{U}_b \right) \times \vec{B} \right]$$
Navier-Stokes
$$\frac{\partial \vec{u}}{\partial t} + \vec{U}_b \cdot \nabla \vec{u} + \vec{u} \cdot \nabla \vec{U}_b + \vec{u} \cdot \nabla \vec{u} = -\nabla p + E \nabla^2 \vec{u} + \left(\nabla \times \vec{B} \right) \times \vec{B} - 2P_o \vec{k}_p \times \vec{u}$$
Conservation
$$\nabla \cdot \vec{u} = 0 \quad , \quad \nabla \cdot \vec{B} = 0$$

• u : perturbated flow in a stress-free sphere

Elongational flow

Topography driven precession instability

Topography driven precession instability

Topography driven precession dynamos

- Large scale magnetic field
- **Bulk** magnetic field
- Quasi-geostrophic flows
- Large dipolar component

E =10⁻⁴ ; *Pm*=0.5 ; *Po*=0.2 ; *c*/*a*=0.94

=> New family of precession dynamos

To summarize

Outline

- 1. Questioning the thermo-solutal dynamo paradigm for the Earth
- 2. Questioning the thermo-solutal dynamo paradigm for the Moon
- 3. Questioning the thermo-solutal dynamo paradigm beyond the Moon

Stellar context

Stellar context

Stellar context

Magnetism of radiative stars (intermediate mass)

Tidal instability

Tides \rightarrow **Elliptical streamlines**

Tidal instability

Cébron & Hollerbach (2014)

- OK for neutral or convective fluids
- But tidally driven dynamos in stably stratified fluids?

David Cébron

Stable stratification

- o (Dimensional) Brunt-Väisälä frequency N₀
 - $N_0^2 = -\alpha \nabla T \cdot \boldsymbol{g}$
 - $N_0^2 > 0 \Longrightarrow$ stably stratified,
 - Internal gravity waves.

Stable stratification

- o (Dimensional) Brunt-Väisälä frequency N₀
 - $N_0^2 = -\alpha \nabla T \cdot \boldsymbol{g}$
 - $N_0^2 > 0 \Longrightarrow$ stably stratified,
 - Internal gravity waves.

Growth rate elsewhere?
 Dynamo?

Hypothesis: - Boussinesq fluid
 - Barotropic & linear gravity

Mathematical formulation

- Basic state: U₀, T₀, g,
- ► Scales: R_* , Ω_s^{-1} , $\Omega_s^2 R_*/(\alpha g_o)$ and $R_*\Omega_s\sqrt{\mu_0\rho_*}$,
- Dimensionless numbers

$$Ek = \frac{\nu}{\Omega_s R_*^2} \le 10^{-16}, \quad 10^{-6} \le Pr = \frac{\nu}{\kappa} \le 10^{-4}, \quad 10^{-8} \le Pm = \frac{\nu}{\eta_m} \le 10^{-4},$$

• Ellipsoidal container of equatorial ellipticity β_0 .

Boussinesq equations of the perturbations (u, θ, B) in the inertial frame

$$\begin{aligned} \frac{\partial u}{\partial t} &= -(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \, \boldsymbol{U}_0 - (\boldsymbol{U}_0 \cdot \boldsymbol{\nabla}) \, \boldsymbol{u} - (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \, \boldsymbol{u} - \nabla p + Ek \, \boldsymbol{\nabla}^2 \boldsymbol{u} - \theta \, \boldsymbol{g} + (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}, \\ \frac{\partial \theta}{\partial t} &= -(\boldsymbol{U}_0 \cdot \boldsymbol{\nabla}) \, \theta - (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \, T_0 - (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \, \theta + \frac{Ek}{Pr} \, \boldsymbol{\nabla}^2 \theta, \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla} \times (\boldsymbol{U}_0 \times \boldsymbol{B}) + \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{Ek}{Pm} \, \boldsymbol{\nabla}^2 \boldsymbol{B}, \end{aligned}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0.$$

Radiative stars: idealized model (Vidal et al. MNRAS, 2018)

- Fixed $Ek = 10^{-4}$, Pr = 1 and $\Omega_0 = 0$,
- Control parameters

 N_0/Ω_s and max. tidal ellipticity $\epsilon \ll 1$,

- ► **Basic** state: $U_0(\Psi_0)$, $T_0(\Psi_0)$, $g(\Psi_0)$,
- Barotropic state $(\boldsymbol{g} \times \nabla T_0 = \boldsymbol{0})$,
- BC: Stress-free, fixed temperature and electrically insulating.

Hydrodynamic instability (Vidal et al. MNRAS, 2018)

- $Ek = 10^{-4}, Pr = 1, \Omega_0 = 0$,
- **Onset** at $\epsilon_c = 0.054 \ (N_0 / \Omega_s = 0)$

Hydrodynamic instability (Vidal et al. MNRAS, 2018)

MHD simulations (Vidal et al. MNRAS, 2018)

- ▶ Basic flow U_0 not dynamo capable (for magnetic Prandtl numbers $Pm \le 5$),
- Integration over one magnetic diffusive time.

MHD simulations (Vidal et al. MNRAS, 2018)

- ▶ Basic flow U_0 not dynamo capable (for magnetic Prandtl numbers $Pm \le 5$),
- Integration over one magnetic diffusive time.

Dynamo for Rm>2000 & Pm>1

Saturated dynamo

Extrapolation (Vidal et al. MNRAS, 2018)

Large-scale surface field!

- Similar to convective scalings,
- Typical surface field strength

$$B_0 = \delta \frac{3}{2} \sqrt{\frac{3\mu_0}{4\pi}} \frac{R_*^{5/2}}{M_*^{1/2}} \Omega_s \frac{m}{D^3} \left| 1 - \Omega_0 \right|,$$
$$10^{-3} \le \delta \le 10^{-2}$$

Extrapolation (Vidal et al. MNRAS, 2018)

Large-scale surface field!

$$B_0 = \delta \frac{3}{2} \sqrt{\frac{3\mu_0}{4\pi}} \frac{R_*^{5/2}}{M_*^{1/2}} \Omega_s \frac{m}{D^3} \left| 1 - \Omega_0 \right|$$

- Similar to convective scalings,
- Typical surface field strength

<u>Vega</u> : Measure: 0.6 ± 0.3 G Theory: 1 - 1.5 G

Conclusions

Reading

- Tilgner 2015. Rotational Dynamics of the Core, Treatise on Geophysics, 2nd Edition
- Zhang 2017. Theory and Modelling of Rotating Fluids: Convection, Inertial Waves and Precession, Cambridge

David Cébron